Add like
Add dislike
Add to saved papers

Internal Rotation of OH Group in 4-Hydroxy-2-butynenitrile Studied by Millimeter-Wave Spectroscopy.

Cyanoacetylene, HCC-CN is a ubiquitous molecule in the Universe. However, its interstellar chemistry is not well understood and its understanding requires laboratory data including rotational spectroscopy of possible products coming from a reaction with another compounds. In this study we present the first spectroscopic characterization of gauche conformation of 4-hydroxy-2-butynenitrile (HOCH2 CCCN), a formal adduct of cyanoacetylene on formaldehyde, in the frequency range up to 500 GHz. The analysis of the rotational spectrum was complicated by internal rotation of the OH group that connects two equivalent gauche configurations. The spectral assignment was aided by high-level quantum chemical calculations that were particularly useful in the interpretation of torsional-rotational part of the problem. The applied reduced-axis-system (RAS) formalism allowed fitting within experimental accuracy the lines with K a < 18. We also present the method of search for initial global solution of torsional-rotational problem within RAS formalism. Accurate spectroscopic parameters obtained in this study provide a reliable basis for the detection of 4-hydroxy-2-butynenitrile in the interstellar medium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app