Add like
Add dislike
Add to saved papers

Association of air particulate pollution with bone loss over time and bone fracture risk: analysis of data from two independent studies.

Background: Air particulate matter (PM) is a ubiquitous environmental exposure associated with oxidation, inflammation, and age-related chronic disease. Whether PM is associated with loss of bone mineral density (BMD) and risk of bone fractures is undetermined.

Methods: We conducted two complementary studies of: (i) long-term PM <2.5 μm (PM2.5 ) levels and osteoporosis-related fracture hospital admissions among 9.2 million Medicare enrollees of the Northeast/Mid-Atlantic United States between 2003-2010; (ii) long-term black carbon [BC] and PM2.5 levels, serum calcium homeostasis biomarkers (parathyroid hormone, calcium, and 25-hydroxyvitamin D), and annualized BMD reduction over a 8-year follow-up of 692 middle-aged (46.7±12.3 yrs), low-income BACH/Bone cohort participants.

Findings: In the Medicare analysis, risk of bone fracture admissions at osteoporosis-related sites was greater in areas with higher PM2.5 levels (Risk ratio [RR] 1.041, 95% Confidence Interval [CI], 1.030, 1.051). This risk was particularly high among low-income communities (RR 1.076; 95% CI, 1.052, 1.100). In the longitudinal BACH/Bone study, baseline BC and PM2.5 levels were associated with lower serum PTH (Estimate for baseline one interquartile increase in 1-year average BC= -1.16, 95% CI -1.93, -0.38; Estimate for baseline one interquartile increase in 1-year average PM2.5 = -7.39; 95%CI -14.17, -0.61). BC level was associated with higher BMD loss over time at multiple anatomical sites, including femoral neck (-0.08%/year per one interquartile increase; 95% CI -0.14, -0.02%/year) and ultradistal radius (-0.06%/year per one interquartile increase; 95% CI -0.12, -0.01%/year).

Interpretation: Our results suggest that poor air quality is a modifiable risk factor for bone fractures and osteoporosis, especially in low-income communities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app