Journal Article
Review
Add like
Add dislike
Add to saved papers

Kinetics of transmitter release at the calyx of Held synapse.

Synaptic contacts mediate information transfer between neurons. The calyx of Held, a large synapse in the mammalian auditory brainstem, has been used as a model system for the mechanism of transmitter release from the presynaptic terminal for the last 20 years. By applying simultaneous recordings from pre- and postsynaptic compartments, the calcium-dependence of the kinetics of transmitter release has been quantified. A single pool of readily releasable vesicles cannot explain the time course of release during repetitive activity. Rather, multiple pools of vesicles have to be postulated that are replenished with distinct kinetics after depletion. The physical identity of vesicle replenishment has been unknown. Recently, it has become possible to apply total internal reflection fluorescent microscopy to the calyx terminal. This technique allowed the visualization of the dynamics of individual synaptic vesicles. Rather than recruitment of vesicles to the transmitter release sites, priming of tethered vesicles in the total internal reflection fluorescent field limited the number of readily releasable vesicles during sustained activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app