Add like
Add dislike
Add to saved papers

Pharmacokinetics and pharmacodynamics of PEGylated truncated human cystathionine beta-synthase for treatment of homocystinuria.

Life Sciences 2018 May 2
AIMS: PEGylated human truncated cystathionine beta-synthase, lacking the C-terminal regulatory domain (PEG-CBS), is a promising preclinical candidate for enzyme replacement therapy in homocystinuria (HCU). It was designed to function as a metabolic sink to decrease the severely elevated plasma and tissue homocysteine concentrations. In this communication, we evaluated pharmacokinetics (PK), pharmacodynamics (PD) and sub-chronic toxicity of PEG-CBS in homocystinuric mice, wild type rats and monkeys to estimate the minimum human efficacious dose for clinical trials.

MAIN METHODS: Animal models received single or multiple doses of PEG-CBS. Activity of PEG-CBS and sulfur amino acid metabolites were determined in plasma and used to determine PK and PD.

KEY FINDINGS: The plasma half-lives of PEG-CBS after a single subcutaneous (SC) injection were approximately 20, 44 and 73 h in mouse, rat and monkey, respectively. The SC administration of PEG-CBS resulted in a significant improvement or full correction of metabolic imbalance in both blood and tissues of homocystinuric mice. The PD of PEG-CBS in mouse was dose-dependent, but less than dose-proportional, with the maximal efficacy achieved at 8 mg/kg. PEG-CBS was well-tolerated in mice and monkeys, but resulted in dose-dependent minimal-to-moderate inflammation at the injection sites and vacuolated macrophages in rats. Allometric scaling of animal data was linear and the estimated human efficacious dose was determined as 0.66 mg/kg administered once a week.

SIGNIFICANCE: These results provide critical preclinical data for the design of first-in-human PEG-CBS clinical trial.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app