Add like
Add dislike
Add to saved papers

pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy.

In the present study, novel pH-responsive prodrug nanoparticles based on xylan-curcumin (xyl-cur) conjugate were developed to enhance the therapeutic efficacy of curcumin in cancer therapy. The synthesis of xyl-cur conjugate (prodrug) was confirmed by FT-IR, 1 H NMR, UV-vis and fluorescence spectroscopy. The xyl-cur prodrug was subsequently self-assembled in to nanoparticles (xyl-cur prodrug NPs) in an aqueous medium with the average particle size 253 nm and the zeta potential of -18.76 mV. The xyl-cur prodrug NPs were highly pH-sensitive in nature and most of the drug was released at lower pH. The interaction of the xyl-cur prodrug NPs with blood components was tested by hemolysis study. The cytotoxic activity of the xyl-cur prodrug NPs against human colon cancer cells (HT-29, HCT-15) demonstrated that the prodrug NPs exhibits greater cytotoxic effect than curcumin. Therefore, these results reveal that xyl-cur prodrug NPs could be a promising candidate for improving the intracellular delivery of curcumin in cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app