Add like
Add dislike
Add to saved papers

Microwave-assisted co-pyrolysis of pretreated lignin and soapstock for upgrading liquid oil: Effect of pretreatment parameters on pyrolysis behavior.

The co-pyrolysis of pretreated lignin and soapstock was carried out to upgrade vapors under microwave irradiation. Results showed that the yield of 29.92-42.21 wt% of upgraded liquid oil was achieved under varied pretreatment conditions. Char yield decreased from 32.44 wt% for untreated control to 24.35 wt% for the 150 °C pretreated samples. The increased temperature, irradiation time and acid concentration were conducive to decrease the relative contents of phenols and oxygenates in liquid oils. The main components of the liquid oil were gasoline fraction (mono-aromatics and C5-C12 aliphatics), which ranged from 57.38 to 71.98% under various pretreatment conditions. Meanwhile, the diesel fraction (C12+ aliphatics) ranged from 13.16 to 22.62% from co-pyrolysis of pretreated lignin and soapstock, comparing with 10.18% of C12+ aliphatics from co-pyrolysis of non-pretreated lignin and soapstock. A possible mechanism was proposed for co-pyrolysis of pretreated lignin and soapstock for upgraded liquid oils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app