Add like
Add dislike
Add to saved papers

Impaired Fast Network Oscillations and Mitochondrial Dysfunction in a Mouse Model of Alpha-synucleinopathy (A30P).

Neuroscience 2018 May 2
Intracellular accumulation of alpha-synuclein (α-syn) is a key pathological process evident in Lewy body dementias (LBDs), including Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB). LBD results in marked cognitive impairments and changes in cortical networks. To assess the impact of abnormal α-syn expression on cortical network oscillations relevant to cognitive function, we studied changes in fast beta/gamma network oscillations in the hippocampus in a mouse line that over-expresses human mutant α-syn (A30P). We found an age-dependent reduction in the power of the gamma (20-80 Hz) frequency oscillations in slices taken from mice aged 9-16 months (9+A30P), that was not present in either young 2-6 months old (2+A30P) mice, or in control mice at either age. The mitochondrial blockers potassium cyanide and rotenone both reduced network oscillations in a concentration-dependent manner in aged A30P mice and aged control mice but slices from A30P mice showed a greater reduction in the oscillations. Histochemical analysis showed an age-dependent reduction in cytochrome c oxidase (COX) activity, suggesting a mitochondrial dysfunction in the 9+A30P group. A deficit in COX IV expression was confirmed by immunohistochemistry. Overall, our data demonstrate an age-dependent impairment in mitochondrial function and gamma frequency activity associated with the abnormal expression of α-syn. These findings provide mechanistic insights into the consequences of over-expression of α-syn which might contribute to cognitive decline.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app