Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Transcriptional regulation mediated by H2A.Z via ANP32e-dependent inhibition of protein phosphatase 2A.

The mechanisms that regulate H2A.Z and its requirement for transcription in differentiated mammalian cells remains ambiguous. In this study, we identified the interaction between the C-terminus of ANP32e and N-terminus of H2A.Z in a yeast two-hybrid screen. Knockdown of ANP32e resulted in proteasomal degradation and nuclear depletion of H2A.Z or of a chimeric green florescence protein fused to its N-terminus. This effect was reversed by inhibition of protein phosphatase 2A (PP2A) and, conversely, reproduced by overexpression of its catalytic subunit. Accordingly, knockdown of ANP32e inhibited phosphorylation of H2A.Z, whereas a mutation of serine-9 proved its requirement for both the protein's stability and nuclear localization, as did knockdown of the nuclear mitogen and stress-induced kinase 1. Moreover, ANP32e's knockdown also revealed its differential requirement for cell signaling and gene expression, whereas, genome-wide binding analysis confirmed its co-localization with H2A.Z at transcription start sites, as well as, gene bodies of inducible and tissue-specific genes. The data also suggest that H2A.Z restricts transcription, which is moderated by ANP32e at the promoter and gene bodies of expressed genes. Thus, ANP32e, through inhibition of PP2A, is required for nucleosomal inclusion of H2A.Z and the regulation of gene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app