Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Autophagy as a compensation mechanism participates in ethanol-induced fetal adrenal dysfunction in female rats.

Autophagy plays a vital role in embryonic development and cell differentiation. Our previous study demonstrated that prenatal ethanol exposure (PEE) resulted in intrauterine growth retardation (IUGR) and adrenal developmental toxicities in rat offspring. The present study focused on PEE-induced autophagy as an underlying mechanism and its biological significance in female fetal rats. Female fetuses in the PEE group exhibited lower body weights and suffered adrenal structural abnormalities compared to the controls. Cell proliferation was inhibited, the insulin-like growth factor 1 (IGF1) pathway was reduced, and autophagy was activated in the glands of female fetal rats. Ethanol increased the ratio of microtubule-associated protein light chain 3 beta-II (LC3β-II) to LC3β-I in vitro, and it reduced cortisol levels in time- and concentration-dependent manners in human adrenocortical carcinoma cells (NCI-H295A). Bafilomycin A1 inhibited autophagy, steroidogenic factor 1 (SF1) protein and steroidogenesis in the present study. Rapamycin with ethanol up-regulated autophagy and SF1 expression and activated steroidogenesis when compared with ethanol alone. In addition, ethanol inhibited IGF1 receptor (IGF1R) and phospho-mTOR (Ser2448) expression in a concentration-dependent manner. These results demonstrate that PEE activated autophagy in fetal adrenal glands, and the underlying mechanism may be associated with inhibition of the IGF1R/phospho-mTOR (Ser2448) pathway. Autophagy may be a compensatory mechanism for the PEE-induced inhibition of fetal adrenal steroidogenesis to maintain fetal adrenal development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app