Add like
Add dislike
Add to saved papers

Nanoparticle titanium dioxide affects the growth and microRNA expression of switchgrass (Panicum virgatum).

Genomics 2018 March 8
Nanoparticle TiO2 is a common chemical used in daily life. As increasing usage of TiO2 , it is becoming a potentially dangerous contaminant to the environment. However, the impact of TiO2 is not well understood. In this paper, switchgrass was employed to investigate the impacts of nanoparticle TiO2 on plant growth and development as well as the potential impact on the expression of microRNAs (miRNAs). TiO2 significantly affected switchgrass seed generation as well as plant growth and development in a dose-dependent manner. Particularly, TiO2 significantly inhibited root development. miRNA expressions were also significantly altered. Nanoparticle TiO2 may regulate plant development through controlling the expression of certain miRNAs. Among the 16 tested miRNAs, the expression of some miRNAs, such as miR390 and miR399 was increased with increasing TiO2 concentrations; the expression of some miRNAs, such as miR169 was decreased with increasing TiO2 concentrations; the other miRNAs show different expression patterns.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app