Add like
Add dislike
Add to saved papers

In vitro and in vivo characterization of the bifunctional μ and δ opioid receptor ligand UFP-505.

BACKGROUND AND PURPOSE: Targeting more than one opioid receptor type simultaneously may have analgesic advantages in reducing side-effects. We have evaluated the mixed μ opioid receptor agonist/ δ opioid receptor antagonist UFP-505 in vitro and in vivo.

EXPERIMENTAL APPROACH: We measured receptor density and function in single μ, δ and μ /δ receptor double expression systems. GTPγ35 S binding, cAMP formation and arrestin recruitment were measured. Antinociceptive activity was measured in vivo using tail withdrawal and paw pressure tests following acute and chronic treatment. In some experiments, we collected tissues to measure receptor densities.

KEY RESULTS: UFP-505 bound to μ receptors with full agonist activity and to δ receptors as a low efficacy partial agonist At μ, but not δ receptors, UFP-505 binding recruited arrestin. Unlike morphine, UFP-505 treatment internalized μ receptors and there was some evidence for internalization of δ receptors. Similar data were obtained in a μ /δ receptor double expression system. In rats, acute UFP-505 or morphine, injected intrathecally, was antinociceptive. In tissues harvested from these experiments, μ and δ receptor density was decreased after UFP-505 but not morphine treatment, in agreement with in vitro data. Both morphine and UFP-505 induced significant tolerance.

CONCLUSIONS AND IMPLICATIONS: In this study, UFP-505 behaved as a full agonist at μ receptors with variable activity at δ receptors. This bifunctional compound was antinociceptive in rats after intrathecal administration. In this model, dual targeting provided no advantages in terms of tolerance liability.

LINKED ARTICLES: This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit https://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app