Add like
Add dislike
Add to saved papers

Rapid, theoretically artifact-free calculation of static magnetic field induced by voxelated susceptibility distribution in an arbitrary volume of interest.

PURPOSE: To demonstrate a computationally efficient and theoretically artifact-free method to calculate static field (B0 ) inhomogeneity in a volume of interest induced by an arbitrary voxelated susceptibility distribution.

METHODS: Our method computes B0 by circular convolution between a zero-filled susceptibility matrix and a shifted, voxel-integrated dipolar field kernel on a grid of size NS +NT - 1 in each dimension, where NS and NT are the sizes of the susceptibility source and B0 target grids, respectively. The computational resource requirement is independent of source-target separation. The method, called generalized susceptibility voxel convolution, is demonstrated on three susceptibility models: an ellipsoid, MR-compatible screws, and a dynamic human heartbeat model.

RESULTS: B0 in an ellipsoid calculated by generalized susceptibility voxel convolution matched an analytical solution nearly exactly. The method also calculated screw-induced B0 in agreement with experimental data. Dynamic simulation demonstrated its computational efficiency for repeated B0 calculations on time-varying susceptibility. On the contrary, conventional and alias-subtracted k-space-discretized Fourier convolution methods showed nonnegligible aliasing and Gibbs ringing artifacts in the tested models.

CONCLUSION: Generalized susceptibility voxel convolution can be a fast and reliable way to compute susceptibility-induced B0 when the susceptibility source is not colocated with the B0 target volume of interest, as in modeling B0 variations from motion and foreign objects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app