Add like
Add dislike
Add to saved papers

Closed loop control of microscopic particles incorporating steady streaming and visual feedback.

Automatic manipulation of microscopic particles is very important in biology, especially in new lab-on-chip systems for automatic testing and DNA manipulation. We suggest a particle manipulation system (PMS) based on vibrating piezoelectric beams creating steady streaming flow in a viscous liquid. The flow is nearly unidirectional and it is used to control the position and velocity of the particles in the workspace of the PMS. The particles position in the PMS are controlled by visual feedback. This study presents the manipulation method, the system's model describing its behavior and characterizes experimentally its performance. The PMS is capable moving a 2-200 μm particle in a workspace of 8x8 mm2 with an absolute accuracy of 0.2 μm. The characteristic velocity in 500 cP Si oil, is 20 μm/s using an actuation voltage amplitude of 5 V and can reach 250 μm/s using 15 V respectively. We can also move a constellation of several particles in various sizes without changing the distance between them. The accuracy of the manipulation can be increased by enhancing the amplification of the microscope on the expanse of a smaller workspace field of view.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app