Add like
Add dislike
Add to saved papers

Rapid nonapeptide synthesis during a critical period of development in the prairie vole: plasticity of the paraventricular nucleus of the hypothalamus.

Vasopressin (VP) and oxytocin (OT) are involved in modulating basic physiology and numerous social behaviors. Although the anatomical distributions of nonapeptide neurons throughout development have been described, the functional roles of VP and OT neurons during development are surprisingly understudied, and it is unknown whether they exhibit functional changes throughout early development. We utilized an acute social isolation paradigm to determine if VP and OT neural responses in eight nonapeptide cell groups differ at three different stages of early development in prairie voles. We tested pups at ages that are representative of the three rapid growth stages of the developing brain: postnatal day (PND)2 (closed eyes; poor locomotion), PND9 (eye opening; locomotion; peak brain growth spurt), and PND21 (weaning). Neural responses were examined in pups that (1) were under normal family conditions with their parents and siblings, (2) were isolated from their parents and siblings and then reunited, and (3) were isolated from their parents and siblings. We found that VP and OT neural activity (as assessed via Fos co-localization) did not differ in response to social condition across development. However, remarkably rapid VP and OT synthesis in response to social isolation was observed only in the paraventricular nucleus of the hypothalamus (PVN) and only in PND9 pups. These results suggest that PVN nonapeptide neurons exhibit distinct cellular properties during a critical period of development, allowing nonapeptide neurons to rapidly upregulate peptide production in response to stressors on a much shorter timescale than has been observed in adult animals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app