Add like
Add dislike
Add to saved papers

A Novel Mechanism for Improved Exercise Performance in Pediatric Fontan Patients After Cardiac Rehabilitation.

Patients with a Fontan circulation have impaired exercise capacity. Cardiac rehabilitation (CR) has shown promise in enhancing peak exercise parameters in this population, but an improvement in submaximal exercise has not been consistently demonstrated. We assessed the hypothesis that participation in CR will be associated with more efficient oxygen extraction and ventilation during submaximal exercise. In this prospective study, pediatric Fontans completed two 60 min CR sessions per week for 12 weeks. Cardiopulmonary exercise testing and stress echocardiography were performed at baseline and last CR session, and then compared with a paired sample t test. Ten pediatric Fontans completed the study. Five had tricuspid atresia and five had hypoplastic left heart syndrome. No serious adverse events occurred during CR sessions. Peak indexed oxygen consumption increased by a mean of 3.7 mL/kg/min (95% CI 1.5-5.9; p = 0.004), and peak oxygen pulse increased by a mean of 0.9 mL/beat (95% CI 0.4-1.4; p = 0.004). The peak respiratory exchange ratio did not change significantly. The significant difference in oxygen pulse became evident during submaximal exercise without a corresponding difference in echocardiographic stroke volume. Indexed oxygen consumption at ventilatory anaerobic threshold increased by a mean of 3.0 mL/kg/min (95% CI - 0.07 to 6.0; p = 0.055). The slope for the volume of expired ventilation to volume of carbon dioxide production improved by a mean of 4.5 (95% CI - 8.4 to - 0.6; p = 0.03). We observed significant improvements in both submaximal and peak exercise performance in pediatric Fontans undergoing CR with no serious adverse events. These changes appeared to be mediated, at least in part, by more efficient oxygen extraction and ventilation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app