Journal Article
Review
Add like
Add dislike
Add to saved papers

Heterogeneity in hippocampal place coding.

The discovery of place cells provided fundamental insight into the neural basis by which the hippocampus encodes spatial memories and supports navigation and prompted the development of computational models to explain the emergence of their spatial selectively. Many such works posit that input from entorhinal grid cells is critical to the formation of place fields, a prediction that has received mixed experimental support. Potentially reconciling seemingly conflicting findings is recent work indicating that subpopulations of pyramidal neurons are functionally distinct and may be driven to varying degrees by different inputs. Additionally, new studies have demonstrated that hippocampal principal neurons encode a myriad of features extending beyond current position. Here, we highlight recent evidence for how extensive heterogeneity in connectivity and genetic expression could interact with membrane biophysics to enable place cells to encode a diverse range of stimuli. These recent findings highlight the need for more computational models that integrate these heterogeneous features of hippocampal principal neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app