Add like
Add dislike
Add to saved papers

Chronic Amyloid β Oligomer Infusion Evokes Sustained Inflammation and Microglial Changes in the Rat Hippocampus via NLRP3.

Neuroscience 2018 March 7
Microglia are instrumental for recognition and elimination of amyloid β1-42 oligomers (AβOs), but the long-term consequences of AβO-induced inflammatory changes in the brain are unclear. Here, we explored microglial responses and transciptome-level inflammatory signatures in the rat hippocampus after chronic AβO challenge. Middle-aged Long Evans rats received intracerebroventricular infusion of AβO or vehicle for 4 weeks, followed by treatment with artificial CSF or MCC950 for the subsequent 4 weeks. AβO infusion evoked a sustained inflammatory response including activation of NF-κB, triggered microglia activation and increased the expression of pattern recognition and phagocytic receptors. Aβ1-42 plaques were not detectable likely due to microglial elimination of infused oligomers. In addition, we found upregulation of neuronal inhibitory ligands and their cognate microglial receptors, while downregulation of Esr1 and Scn1a, encoding estrogen receptor alpha and voltage-gated sodium-channel Na(v)1.1, respectively, was observed. These changes were associated with impaired hippocampus-dependent spatial memory and resembled early neurological changes seen in Alzheimer's disease. To investigate the role of inflammatory actions in memory deterioration, we performed MCC950 infusion, which specifically blocks the NLRP3 inflammasome. MCC950 attenuated AβO-evoked microglia reactivity, restored expression of neuronal inhibitory ligands, reversed downregulation of ERα, and abolished memory impairments. Furthermore, MCC950 abrogated AβO-invoked reduction of serum IL-10. These findings provide evidence that in response to AβO infusion microglia change their phenotype, but the resulting inflammatory changes are sustained for at least one month after the end of AβO challenge. Lasting NLRP3-driven inflammatory alterations and altered hippocampal gene expression contribute to spatial memory decline.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app