Add like
Add dislike
Add to saved papers

Quantifying the stability of oxidatively damaged DNA by single-molecule DNA stretching.

One of the most common DNA lesions is created when reactive oxygen alters guanine. 8-oxo-guanine may bind in the anti-conformation with an opposing cytosine or in the syn-conformation with an opposing adenine paired by transversion, and both conformations may alter DNA stability. Here we use optical tweezers to measure the stability of DNA hairpins containing 8-oxoguanine (8oxoG) lesions, comparing the results to predictive models of base-pair energies in the absence of the lesion. Contrasted with either a canonical guanine-cytosine or adenine-thymine pair, an 8oxoG-cytosine base pair shows significant destabilization of several kBT. The magnitude of destabilization is comparable to guanine-thymine 'wobble' and cytosine-thymine mismatches. Furthermore, the measured energy of 8oxoG-adenine corresponds to theoretical predictions for guanine-adenine pairs, indicating that oxidative damage does not further destabilize this mismatch in our experiments, in contrast to some previous observations. These results support the hypothesis that oxidative damage to guanine subtly alters the direction of the guanine dipole, base stacking interactions, the local backbone conformation, and the hydration of the modified base. This localized destabilization under stress provides additional support for proposed mechanisms of enzyme repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app