Add like
Add dislike
Add to saved papers

Tuning the resonance of polarization-degenerate LP 1,l cladding mode in excessively tilted long period fiber grating for highly sensitive refractive index sensing.

This work presents a sensitive refractive index sensor based on the dual resonance of an excessively tilted long period fiber grating (Ex-TLPFG). The Ex-TLPFG is tuned to couple the guided core mode with only the polarization-degenerate cladding mode LP1,l , which consists of TE/TM0,l and HE2,l vector modes. It is found that the p-polarized LP1,lp mode exhibits a higher sensitivity than that of the s-polarized LP1,ls mode. An optimized sensitivity as high as 12182.9  nm/RIU is achieved for the p-polarized LP1,2p mode at the low refractive index region by tuning the initial resonance condition. The sensing performance is also evaluated through the power measurement method for a single resonance band. It is demonstrated that the improved sensitivity in this work for diameter-reduced Ex-TLPFG is much higher than that for the conventional LPFG based devices, which makes this sensing platform very attractive for a variety of index sensing applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app