JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Phosphodiesterase 10 Inhibitors - Novel Perspectives for Psychiatric and Neurodegenerative Drug Discovery.

BACKGROUND: The phosphodiesterase 10 (PDE10) family, identified in 1999, is mainly expressed in the brain, particularly in the striatum, within the medium spiny neurons, nucleus accumbens, and olfactory tubercle. Inhibitors of PDE10 (PDE10-Is) are a conceptually rational subject for medicinal chemistry with potential use in the treatment of psychiatric and neurodegenerative diseases.

OBJECTIVE: This review is based on peer-reviewed published articles, and summarizes the cellular and molecular biology of PDE10 as a rational target for psychiatric and neurodegenerative drug discovery. Here, we present the classification of PDE10-Is from a medicinal chemistry point of view across a wide range of different, drug-like chemotypes starting from theophylline and caffeine analogs, papaverine and dimethoxy catechol type PDE10-Is, TP-10, MP-10, MP-10/papaverine/quinazoline series inhibitors, and ending with the newest inhibitors obtained from fragment-based lead discovery (FBLD). The authors have collated recent research on inhibition of PDE10A as a promising therapeutic strategy for psychiatric and neurodegenerative diseases, based on its efficacy in animal models of schizophrenia, Parkinson's, Huntington's, and Alzheimer's diseases. This review also presents pharmacological data on PDE10-Is as possible therapeutics for the treatment of cognitive deficits, obesity and depression. Moreover, it summarizes the current strategies for PDE10-Is drug discovery based on the results of clinical trials. The authors also present the latest studies on crystal structures of PDE10 complexes with novel inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app