JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Dissipative Self-Assembly Driven by the Consumption of Chemical Fuels.

Advanced Materials 2018 October
Dissipative self-assembly leads to structures and materials that exist away from equilibrium by continuously exchanging energy and materials with the external environment. Although this mode of self-assembly is ubiquitous in nature, where it gives rise to functions such as signal processing, motility, self-healing, self-replication, and ultimately life, examples of dissipative self-assembly processes in man-made systems are few and far between. Herein, recent progress in developing diverse synthetic dissipative self-assembly systems is discussed. The systems reported thus far can be categorized into three classes, in which: i) the fuel chemically modifies the building blocks, thus triggering their self-assembly, ii) the fuel acts as a template interacting with the building blocks noncovalently, and iii) transient states are induced by the addition of two mutually exclusive stimuli. These early studies give rise to materials that would be difficult to obtain otherwise, including hydrogels with programmable lifetimes, vesicular nanoreactors, and membranes exhibiting transient conductivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app