Add like
Add dislike
Add to saved papers

Adductor magnus: An EMG investigation into proximal and distal portions and direction specific action.

Cadaveric studies indicate that adductor magnus is structurally partitioned into at least two regions. The aim of this study was to investigate the direction-specific actions of proximal and distal portions of adductor magnus, and in doing so determine if these segments have distinct functional roles. Fine-wire EMG electrodes were inserted into two portions of adductor magnus of 12 healthy young adults. Muscle activity was recorded during maximum voluntary isometric contractions (MVICs) across eight tests (hip flexion/extension, internal/external rotation, abduction, and adduction at 0°, 45°, and 90° hip flexion). Median activity within each action (normalized to peak) was compared between segments using repeated measures nonparametric tests (α = 0.05). An effect size (ES = z-score/√sample size) was calculated to determine the magnitude of difference between muscle segments. The relative contribution of each muscle segment differed significantly during internal rotation (P < 0.001; ES = 0.88) and external rotation (P = 0.003, ES = 0.79). The distal portion was most active during extension [median (interquartile range); 100(0)% MVIC)] and internal rotation [58(34)% MVIC]. The proximal portion was most active during extension [100(49)% MVIC] and adduction [59(64)%MVIC], with low level activity during external rotation [15(41)%MVIC]. This study suggests that adductor magnus has at least two functionally unique regions. Differences were most evident during rotation. The different direction-specific actions may imply that each segment performs separate roles in hip stability and movement. These findings may have implications on injury prevention and rehabilitation for adductor-related groin injuries, hamstring strain injury, and hip pathology. Clin. Anat. 31:535-543, 2018. © 2018 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app