Add like
Add dislike
Add to saved papers

Determination of carbonyl compounds in electronic cigarette refill solutions and aerosols through liquid-phase dinitrophenyl hydrazine derivatization.

In this study, we report a 2,4-dinitrophenylhydrazine (DNPH) derivatization HPLC/UV method to quantify carbonyl compounds (CCs) either in electronic cigarette (EC) refill solutions or in vaped aerosols. Vaped aerosol samples were entrained in a 1 L atm min-1 ambient lab air stream and pulled through an impinger containing a DNPH solution for derivatization. The mass change tracking (MCT) approach was used to check mass balance. Refill solution samples were diluted (2, 4, and 10 times) in a DNPH/acetonitrile solution for derivatization. EC vaping samples were collected for 5, 10, or 15 puffs (2-s puff duration) with a 10-s interpuff interval. The DNPH derivatization method was used successfully for the estimation of both EC liquid CCs concentrations and vaping emission factors. The results for formaldehyde (FA), acetaldehyde (AA), and butyraldehyde (BA) were determined as 10.4 ± 3.10 μg mL-1 (27.6 ± 7.43 ng puff-1 ), 1.9 ± 0.83 μg mL-1 (4.4 ± 1.98 ng puff-1 ), and 4.4 ± 2.82 μg mL-1 (12.0 ± 7.43 ng puff-1 ), respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app