JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Oscillating modes of driven colloids in overdamped systems.

Microscopic colloidal particles suspended in liquids are a prominent example of an overdamped system where viscous forces dominate over inertial effects. Frequently, colloids are used as sensitive probes, e.g., in biophysical applications from which molecular forces are inferred. The interpretation of such experiments rests on the assumption that, even when the particles are driven, the liquid remains in equilibrium. Here we experimentally demonstrate that this is not valid for particles in viscoelastic fluids. Even at small driving forces, we observe particle oscillations with several tens of seconds. They are attributed to non-equilibrium fluctuations of the fluid being excited by the particle's motion. The oscillatory dynamics is in quantitative agreement with an overdamped Langevin equation with negative friction-memory term being equivalent to a stochastically driven underdamped oscillator. Such oscillatory modes are expected to widen the use of colloids as model systems but must also be considered in colloidal probe experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app