Add like
Add dislike
Add to saved papers

Temporal-spatial reach parameters derived from inertial sensors correlate to neurodevelopment in toddlers born preterm.

Temporal-spatial reach parameters are revealing of upper-limb function in children with motor impairments, but have not been quantified in a toddler population. This work quantitatively characterizes temporal-spatial reach in typically-developing (TD) and very-low-birth-weight (VLBW) preterm toddlers, who are at increased risk of motor impairment. 47 children born VLBW (<1500 g birth-weight; ≤32 weeks gestation) and 22 TD children completed a reaching assessment at 18-22 months of age, adjusted for prematurity. Inertial sensors containing accelerometers, gyroscopes and magnetometers were fixed to toddlers' wrists while they reached for a cube. Reach time, path length, velocity at contact, peak velocity magnitude and timing, acceleration at contact, and peak acceleration were derived from inertial-sensor and high-speed video data. Preterm children also received the Bayley Scales of Infant Development-3rd Edition (BSID-III). Compared to TD toddlers, preterm toddlers had significantly different reach path length, velocity at contact, peak velocity magnitude and timing, acceleration at contact, and peak acceleration. Among preterm toddlers, decreased reach time (rho = -.346, p = .018), decreased time to peak velocity (r = -.390, p = .007), and increased peak acceleration (r = .298, p = .044) correlated to higher BSID-III fine motor scores. Toddlers with below-average fine motor scores had significantly higher peak and contact velocity. Preterm toddlers demonstrated substantial differences in temporal-spatial reach parameters compared to TD toddlers, and evidence indicated several reach parameters were revealing of function and may be useful as a clinical assessment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app