Add like
Add dislike
Add to saved papers

Influences of ionic liquid and temperature on the tailorable surface morphology of F-apatite nanocomposites for enhancing biological abilities for orthopedic implantation.

This report has approached for the green synthesis of morphological controlled novel metal-doped fluorinated apatite/polymeric nanocomposites. The synthesized nanocomposites have investigated for hard tissue engineering and bone substitute applications. The selected fluoro ionic liquid explored the dual performances as fluorine precursor and as a soft template for the morphological development of apatite nanocomposite synthesis. The structural and surface studies (XRD, FTIR, FE-SEM, EDS, AFM, HR-TEM & SAED) confirmed the crystalline and morphological changes of synthesized fluorohydroxyapatite nanostructures at two different reaction temperatures. The fluorinated apatite nanocomposites doped with silver for metal-doped composites, which have effective antibacterial efficacy and favorable biocompatibility. The silver-doped nanocomposites showed excellent antibacterial ability against Staphylococcus aureus and Escherichia coli bacterial pathogens with the uniform release of silver and fluorine ions. These antibacterial performances have systematically tested by the quantitative and qualitative methods. The rod-like fluorinated apatite nanocrystals promote cell adhesion and viability of human osteosarcoma (MG-63) cell lines and these studies compared with the sheet-like apatite nanocomposites. This type of biomedical apatite materials may be a promising material for orthopedic implant and regeneration applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app