Add like
Add dislike
Add to saved papers

Novel high-strength, low-alloys Zn-Mg (<0.1wt% Mg) and their arterial biodegradation.

It is still an open challenge to find a biodegradable metallic material exhibiting sufficient mechanical properties and degradation behavior to serve as an arterial stent. In this study, Zn-Mg alloys of 0.002 (Zn-002Mg), 0.005 (Zn-005Mg) and 0.08wt% Mg (Zn-08Mg) content were cast, extruded and drawn to 0.25mm diameter, and evaluated as potential biodegradable stent materials. Structural analysis confirmed formation of Mg2 Zn11 intermetallic in all three alloys with the average grain size decreasing with increasing Mg content. Tensile testing, fractography analysis and micro hardness measurements showed the best integration of strength, ductility and hardness for the Zn-08Mg alloy. Yield strength, tensile strength, and elongation to failure values of >200-300MPa, >300-400MPa, and >30% respectively, were recorded for Zn-08Mg. This metal appears to be the first formulated biodegradable material that satisfies benchmark values desirable for endovascular stenting. Unfortunately, the alloy reveals signs of age hardening and strain rate sensitivity, which need to be addressed before using this metal for stenting. The explants of Zn-08Mg alloy residing in the abdominal aorta of adult male Sprague-Dawley rats for 1.5, 3, 4.5, 6 and 11months demonstrated similar, yet slightly elevated inflammation and neointimal activation for the alloy relative to what was recently reported for pure zinc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app