Add like
Add dislike
Add to saved papers

Development and mechanical characterisation of self-compressed collagen gels.

Collagen gels are considered a promising biomaterial for the manufacturing of tissue engineering scaffolds, however, their mechanical properties often need to be improved to enable them to provide enough mechanical support during the course of tissue regeneration process. In this paper, we present a simple self-compression technique for the improvement of the mechanical properties of collagen gels, identified by the fitting of bespoke biphasic finite element models. Radially-confined highly hydrated gels were allowed to self-compress for 18h, expelling fluid, and which were subsequently subjected to unconfined ramp-hold compression. Gels, initially of 0.2%, 0.3% and 0.4% (w/v) collagen and 13mm thickness, transformed to 2.9±0.2%, 3.2±0.3% and 3.6±0.1% (w/w) collagen and 0.45±0.06mm, 0.69±0.04mm and 0.99±0.07mm thickness. Young's moduli of the compressed gels did not increase with increasing collagen fibril density, whilst zero-strain hydraulic permeability significantly decreased from 51 to 21mm4 /Ns. The work demonstrates that biphasic theory, applied to unconfined compression, is a highly appropriate paradigm to mechanically characterise concentrated collagen gels and that confined compression of highly hydrated gels should be further investigated to enhance gel mechanical performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app