JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

In Silico Investigations of Calcium Phosphate Mineralization in Extracellular Vesicles.

Calcification in bone, cartilage, and cardiovascular tissues involves the release of specialized extracellular vesicles (EVs) that promote mineral nucleation. The small size of the EVs, however, makes molecular level studies difficult, and consequently uncertainty exists on the role and function of these structures in directing mineralization. The lack of mechanistic understanding associated with the initiators of ectopic mineral deposition has severely hindered the development of potential therapeutic options. Here, we used multiscale molecular dynamics simulations to investigate the calcification within the EVs. Results show that Ca2+ -HPO4 2- and phosphatidylserine complexes facilitate the early nucleation. Use of coarse-grained simulations allows investigations of Ca2+ -PO4 3- nucleation and crystallization in the EVs. Systematic variation in the ion-to-water ratio shows that the crystallization and growth strongly depend on the enrichment of the ions and dehydration inside the EVs. Our investigations provide insights into the role of EVs on calcium phosphate mineral nucleation and growth in both physiological and pathological mineralization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app