Add like
Add dislike
Add to saved papers

Identification of 'Xinlimei' radish candidate genes associated with anthocyanin biosynthesis based on a transcriptome analysis.

Gene 2018 May 31
Radish is an economically important vegetable crop belonging to the family Brassicaceae. The high anthocyanin content of the 'Xinlimei' radish roots has been associated with diverse health benefits. However, there is a lack of transcript-level information regarding anthocyanin biosynthesis. In the present study, the 'Xinlimei' radish root transcriptome was analyzed by RNA sequencing at five developmental stages. A total of 222,384,034 clean reads were obtained and 32,253 unigenes were annotated. Expression profiles revealed 10,890 differentially expressed genes (DEGs) among the five analyzed libraries. The DEGs were predominantly involved in KEGG pathways related to the biosynthesis of phenylpropanoids, flavonoids, flavone, and flavonol. The transcriptome data revealed 44 structural and 182 transcription factor genes (TFs) associated with the anthocyanin biosynthetic pathway. Ten structural genes (i.e., 4CL3, CHSB2, CHS1, CHS3, F3H1, F3'H, DFR, DFR1, ANS, and UFGT) and two MYB genes, which were highly and differentially expressed during root development, may be critical for anthocyanin biosynthesis. Additionally, the co-expression of TFs and structural genes was analyzed. Three structural genes (i.e., DFR, ANS, and UFGT) were validated by molecular cloning. The qRT-PCR results indicated that the expression profiles of DEGs were generally consistent with the high-throughput sequencing results. These findings helped identify candidate genes involved in anthocyanin biosynthesis and may be useful for clarifying the molecular mechanism underlying the accumulation of anthocyanins in radish roots.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app