Add like
Add dislike
Add to saved papers

PCB28 and PCB52 induce hepatotoxicity by impairing the autophagic flux and stimulating cell apoptosis in vitro.

Toxicology Letters 2018 June 2
Hepatotoxicity is one of the adverse health effects induced by polychlorinated biphenyls (PCBs). Recently, autophagy was revealed to play an important role in PCBs-induced toxicology, however, its precise role in PCBs-induced hepatotoxicity is as yet unknown. In this study, treatment of PCB28/PCB52 for 48 h dose-dependently induced hepatotoxicity at doses of 10, 20, 40 and 80 μM in homo and rattus hepatocytes. Expressions of proteins of BECN1, LC3-II and ULK1 significantly increased in PCB28/PCB52-treated cells at a dose of 40 μM, implying initiation of autophagy. Over-expression of p62 suggested deficient clearance of autophagosome. Consistently, accumulation of autophagosome was observed by transmission-electron microscopy and confocal fluorescence microscopy using adenovirus expressing mRFP-GFP-LC3, which may initiate apoptosis. Furthermore, increased reactive oxygen species levels might also induce autophagy and apoptosis. Consistently, cell apoptosis was evoked by the treatment of PCB28/PCB52 compared to the respective controls, which coincided with obvious hepatotoxicity. Subsequently, an inhibitor (3-methlyadenine) and an initiator (rapamycin) of autophagy were used. Compared to PCB28/PCB52 alone-treated cells, initiation of autophagy, blocked autophagic flux, cell apoptosis and hepatotoxicity were alleviated by 3-methlyadenine and aggravated by rapamycin, respectively. Taken together, PCB28 and PCB52 induced hepatotoxicity by impairing autophagic flux and stimulating cell apoptosis in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app