Add like
Add dislike
Add to saved papers

Use of photoswitchable fluorescent proteins for droplet-based microfluidic screening.

Application of droplet-based microfluidics for the screening of microbial libraries is one of the important ongoing developments in functional genomics/metagenomics. In this article, we propose a new method that can be employed for high-throughput profiling of cell growth. It consists of light-driven labelling droplets that contain growing cells directly in a microfluidics observation chamber, followed by recovery of the labelled cells. This method is based on intracellular expression of green-to-red switchable fluorescent proteins. The proof of concept is established here for two commonly used biological models, E. coli and S. cerevisiae. Growth of cells in droplets was monitored under a microscope and, depending on the targeted phenotype, the fluorescence of selected droplets was switched from a "green" to a "red" state. Red fluorescent cells from labelled droplets were then successfully detected, sorted with the Fluorescence Activated Cell Sorting machine and recovered. Finally, the application of this method for different kind of screenings, in particular of metagenomic libraries, is discussed and this idea is validated by the analysis of a model mini-library.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app