Add like
Add dislike
Add to saved papers

IRRADIATOR SYSTEM FOR MANGANESE SULFATE BATH EFFICIENCY MEASUREMENTS USING A PLUTONIUM-BERYLLIUM NEUTRON SOURCE.

This study describes the use of a neutron irradiator system based on a plutonium-beryllium neutron source for MnSO4 solution activation for use to determine the MSB system efficiency. Computational simulations using Monte Carlo code were performed to establish the main characteristics of the irradiator system. Among the simulated geometries and volumes, semi-cylindrical shape with 84.5 cm3 of MnSO4 solution yielded the best option to be built. Activity measurements were performed with a high-pure germanium detector to validate the new irradiation system. Results showed an average efficiency and uncertainty of the experimental standard deviation of the mean: 5.742 × 10-4 ± 0.036 × 10-4 (coverage factor k = 1), for MSB system. Efficiency value obtained shows good correlation to other published methods (i.e. a relative difference of 0.07%). This alternative metrological method demonstrated the utility of neutron sources for the irradiation of solutions in metrology laboratories providing a cost-efficient alternative to nuclear reactors or particle accelerators.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app