Add like
Add dislike
Add to saved papers

Taylor Dispersion of Polydisperse Nanoclusters and Nanoparticles: Modeling, Simulation, and Analysis.

The dimensions of ultrasmall inorganic nanoparticles (US-NPs) is in the heart of the design of diagnostic and therapeutic efficacy; yet its accurate measurement is challenging for most experimental techniques. We show here how to design and analyze Taylor dispersion experiments to characterize the two most sought-after parameters describing size distributions: the number-averaged mean size and polydispersity index. To demonstrate the power of the method, we simulated and analyzed taylograms corresponding to gold US-NPs distributed normally. By using simulation and including experimental noise, we had the advantage that the true values describing size distribution were known exactly, and thus, we were able test the absolute accuracy of our analysis and its robustness against noise. Theory and computational experiments were found in very good agreement, providing a significant step in the analysis of ultrasmall inorganic nanoparticles and Taylor dispersion experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app