Add like
Add dislike
Add to saved papers

Isochorismate-based salicylic acid biosynthesis confers basal resistance to Fusarium graminearum in barley.

Salicylic acid (SA) plays an important role in signal transduction and disease resistance. In Arabidopsis, SA can be made by either of two biosynthetic branches, one involving isochorismate synthase (ICS) and the other involving phenylalanine ammonia-lyase (PAL). However, the biosynthetic pathway and the importance of SA remain largely unknown in Triticeae. Here, we cloned one ICS and seven PAL genes from barley, and studied their functions by their overexpression and suppression in that plant. Suppression of the ICS gene significantly delayed plant growth, whereas PAL genes, both overexpressed and suppressed, had no significant effect on plant growth. Similarly, suppression of ICS compromised plant resistance to Fusarium graminearum, whereas similar suppression of PAL genes had no significant effect. We then focused on transgenic plants with ICS. In a leaf-based test with F. graminearum, transgenic plants with an up-regulated ICS were comparable with wild-type control plants. By contrast, transgenic plants with a suppressed ICS lost the ability to accumulate SA during pathogen infection and were also more susceptible to Fusarium than the wild-type controls. This suggests that ICS plays a unique role in SA biosynthesis in barley, which, in turn, confers a basal resistance to F. graminearum by modulating the accumulation of H2 O2 , O2- and reactive oxygen-associated enzymatic activities. Although SA mediates systemic acquired resistance (SAR) in dicots, there was no comparable SAR response to F. graminearum in barley. This study expands our knowledge about SA biosynthesis in barley and proves that SA confers basal resistance to fungal pathogens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app