Add like
Add dislike
Add to saved papers

The apparent non-host resistance of Ethiopian mustard to a radish-infecting strain of Turnip mosaic virus is largely determined by the C-terminal region of the P3 viral protein.

Two different isolates of Turnip mosaic virus (TuMV: UK 1 and JPN 1) belonging to different virus strains were tested on three different Brassica species, namely turnip (Brassica rapa L.), Indian mustard (Brassica juncea L.) and Ethiopian mustard (Brassica carinata A. Braun). Although all three hosts were readily infected by isolate UK 1, isolate JPN 1 was able to establish a visible systemic infection only in the first two. Ethiopian mustard plants showed no local or systemic symptoms, and no virus antigens could be detected by enzyme-linked immunosorbent assay (ELISA). Thus, this species looks like a non-host for JPN 1, an apparent situation of non-host resistance (NHR). Through an experimental approach involving chimeric viruses made by gene interchange between two infectious clones of both virus isolates, the genomic region encoding the C-terminal domain of viral protein P3 was found to bear the resistance determinant, excluding any involvement of the viral fusion proteins P3N-PIPO and P3N-ALT in the resistance. A further determinant refinement identified two adjacent positions (1099 and 1100 of the viral polyprotein) as the main determinants of resistance. Green fluorescent protein (GFP)-tagged viruses showed that the resistance of Ethiopian mustard to isolate JPN 1 is only apparent, as virus-induced fluorescence could be found in discrete areas of both inoculated and non-inoculated leaves. In comparison with other plant-virus combinations of extreme resistance, we propose that Ethiopian mustard shows an apparent NHR to TuMV JPN 1, but not complete immunity or extreme resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app