Add like
Add dislike
Add to saved papers

Proteomic analysis of hydroxyl radical-induced resuscitation of hypoxia-induced dormant mycobacterial cells.

Background: The genus Mycobacterium has an ability to persist in hostile environments for years before its reactivation in favorable conditions. The major bottleneck in decades of mycobacterial research is a poor understanding of molecular mechanism which assists bacteria to attain dormancy and reactivation later.

Methods: In this study, hydroxyl radical was quantified in aerobically growing mycobacterial cells using 2-deoxy-D-ribose assay. Furthermore, extraneous addition of hydroxyl radical in Wayne's dormancy model induced reactivation of dormant cells. The whole proteome of all three samples, namely, aerobic, Wayne dormancy, and hydroxyl radical reactivated cells was isolated, trypsin digested, and peptides are quantitatively characterized by liquid chromatography-elevated energy mass spectrometry.

Results: This study reports the generation of highly reactive hydroxyl radical by Mycobacterium smegmatis during aerobic respiration. The hydroxyl radical levels can be managed by modulation of iron ions in the cellular pool. Proteomic characterization of resuscitation process highlights the increase in the level of ATPases, iron acquisition, redox response, changes in cell membrane dynamics, and cell wall hydrophobicity which is coupled with restoration of protein synthesis, carbohydrate, and lipid metabolism. In addition, two uncharacterized universal stress proteins MSMEG5245 and MSMEG3950 were uniquely identified in reactivated cells.

Conclusion: Overall, the 1-hydroxypyridine-2-thione-induced reactivation process is a controlled and stepwise exit from dormancy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app