Add like
Add dislike
Add to saved papers

Supramolecular Association Impacts Biomolecule Adsorption onto Goethite.

Formation of biomolecule-rich supramolecular complexes in dissolved organic matter (DOM) and subsequent adsorption onto minerals is important for the development of mineral-stabilized organic matter, yet the impact of supramolecular association on interfacial behavior is seldom studied. A series of supramolecular complexes of model biomolecules (deoxyribonucleic acid (DNA) and bovine serum albumin (BSA)) are synthesized, characterized, and adsorbed onto goethite. Complexes represent 0.1 mg/mL DNA mixed with BSA concentrations from 0.05 to 0.5 mg/mL in 5 mM KCl at pH = 5.0. Circular dichroism demonstrates strong binding between DNA and BSA, with DNA saturation when (BSA) ≈ 0.4 mg/mL. Dynamic light scattering and electrophoretic mobility measurements suggest DNA-BSA binding reduces DNA-DNA electrostatic repulsion. Spectroscopic studies of DNA/BSA complex adsorption show complexation hinders coordination of DNA phosphodiester groups with goethite. Increasing BSA (≤0.4 mg/mL) in DNA/BSA complexes enhances DNA adsorption, due to reduced repulsion between adsorbed DNA helices. When (BSA) > 0.4 mg/mL, however, DNA adsorption is decreased. We hypothesize this results from blocking of surface sites by fast adsorption of BSA loosely associated with DNA/BSA complexes. We posit an additional mechanism describing multilayered architecture formation of organo-mineral associations in soil, suggesting solution interactions may represent an overlooked factor when considering mineral retention of DOM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app