Add like
Add dislike
Add to saved papers

The ubiquitin ligase COP1 regulates cell cycle and apoptosis by affecting p53 function in human breast cancer cell lines.

BACKGROUND: The E3 ubiquitin ligase constitutive photomorphogenic 1 (COP1) mediates cell survival, growth, and development, and interacts with the tumor suppressor protein p53 to induce its ubiquitination and degradation. Recent studies reported that COP1 overexpression is associated with increased cell proliferation, transformation, and disease progression in a variety of cancer types. In this study, we investigated whether COP1 regulates p53-mediated cell cycle arrest and apoptosis in human breast cancer cell lines.

METHODS: We downregulated COP1 expression using lentiviral particles expressing short hairpin RNA (shRNA) targeting COP1 and measured the effects of the knockdown in three different breast cancer cell lines.

RESULTS: COP1 silencing resulted in p53 activation, which induced the expression of p21 and p53-upregulated modulator of apoptosis (PUMA) expression, and reduced the levels of cyclin-dependent kinase 2 (CDK2). Notably, knockdown of COP1 was associated with cell cycle arrest during the G0 /G1 phase.

CONCLUSIONS: The COP1-mediated degradation of p53 regulates cancer cell growth and apoptosis. Our results indicate that COP1 regulates human breast cancer cell proliferation and apoptosis in a p53-dependent manner. These findings suggest that COP1 might be a promising potential target for breast cancer-related gene therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app