Add like
Add dislike
Add to saved papers

Three phases of energy-dependent induction of [Formula: see text] and Chl a fluorescence in Tradescantia fluminensis leaves.

In plants, the short-term regulation (STR, seconds to minute time scale) of photosynthetic apparatus is associated with the energy-dependent control in the chloroplast electron transport, the distribution of light energy between photosystems (PS) II and I, activation/deactivation of the Calvin-Benson cycle (CBC) enzymes, and relocation of chloroplasts within the plant cell. In this work, using a dual-PAM technique for measuring the time-courses of P700 photooxidation and Chl a fluorescence, we have investigated the STR events in Tradescantia fluminensis leaves. The comparison of Chl a fluorescence and [Formula: see text] induction allowed us to investigate the contribution of the trans-thylakoid pH difference (ΔpH) to the STR events. Two parameters were used as the indicators of ΔpH generation: pH-dependent component of non-photochemical quenching of Chl a fluorescence, and pHin -dependent rate of electron transfer from plastoquinol (PQH2 ) to [Formula: see text] (via the Cyt b6 f complex and plastocyanin). In dark-adapted leaves, kinetics of [Formula: see text] induction revealed three phases. Initial phase is characterized by rapid electron flow to [Formula: see text] (τ1/2  ~ 5-10 ms), which is likely related to cyclic electron flow around PSI, while the outflow of electrons from PSI is restricted by slow consumption of NADPH in the CBC. The light-induced generation of ΔpH and activation of the CBC promote photooxidation of P700 and concomitant retardation of [Formula: see text] reduction (τ1/2  ~ 20 ms). Prolonged illumination induces additional slowing down of electron transfer to [Formula: see text] (τ1/2  ≥ 30-35 ms). The latter effect is not accompanied by changes in the Chl a fluorescence parameters which are sensitive to ΔpH generation. We suggest the tentative explanation of the latter results by the reversal of Q-cycle, which causes the deceleration of PQH2 oxidation due to the back pressure of stromal reductants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app