Add like
Add dislike
Add to saved papers

Cadmium Immobilization Potential of Rice Straw-Derived Biochar, Zeolite and Rock Phosphate: Extraction Techniques and Adsorption Mechanism.

Heavy metal contamination in agricultural soils has become a serious environmental concern due to their generally high mobility and toxic effects on plants and food security. An incubation study was conducted to assess the effectiveness of biochar (BC), zeolite (ZE) and rock phosphate (RP) stabilizers on the immobilization of cadmium (Cd) in contaminated soils. Various extraction techniques were carried out: a sequential extraction procedure, the European Community Bureau of Reference (BCR), the toxicity characteristics leaching procedure (TCLP) and extraction with ammonium nitrate. In addition, Cd adsorption by these materials was observed using Langmuir and Freundlich isotherms. The results showed that with an increase in soil pH the exchangeable fraction of Cd in soil was significantly reduced by 28%-29.4%, 9%-13% and 4%-14% for BC, ZE, and RP, respectively. According to the Langmuir adsorption isotherm, BC-amended soil showed a higher adsorption capacity (Qm ) of Cd from 8.38 to 19.85 mg g-1 . Overall, BC offered better results when compared to other amendments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app