Add like
Add dislike
Add to saved papers

Study on room temperature gas-sensing performance of CuO film-decorated ordered porous ZnO composite by In 2 O 3 sensitization.

For the first time, ordered mesoporous ZnO nanoparticles have been synthesized by a template method. The electroplating after chemical plating method was creatively used to form copper film on the surface of the prepared ZnO, and then a CuO film-decorated ordered porous ZnO composite (CuO/ZnO) was obtained by a high-temperature oxidation method. In2 O3 was loaded into the prepared CuO film-ZnO by an ultrasonic-assisted method to sensitize the room temperature gas-sensing performance of the prepared CuO/ZnO materials. The doped In2 O3 could effectively improve the gas-sensing properties of the prepared materials to nitrogen oxides (NO x ) at room temperature. The 1% In2 O3 doped CuO/ZnO sample (1 wt% In2 O3 -CuO/ZnO) showed the best gas-sensing properties whose response to 100 ppm NO x reached 82%, and the detectable minimum concentration reached 1 ppm at room temperature. The prepared materials had a good selectivity, better response, very low detection limit, and high sensitivity to NO x gas at room temperature, which would have a great development space in the gas sensor field and a great research value.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app