Add like
Add dislike
Add to saved papers

Molecular characterization of breast cancer cell response to metabolic drugs.

Oncotarget 2018 Februrary 10
Metabolic reprogramming is a hallmark of cancer. It has been described that breast cancer subtypes present metabolism differences and this fact enables the possibility of using metabolic inhibitors as targeted drugs in specific scenarios. In this study, breast cancer cell lines were treated with metformin and rapamycin, showing a heterogeneous response to treatment and leading to cell cycle disruption. The genetic causes and molecular effects of this differential response were characterized by means of SNP genotyping and mass spectrometry-based proteomics. Protein expression was analyzed using probabilistic graphical models, showing that treatments elicit various responses in some biological processes such as transcription. Moreover, flux balance analysis using protein expression values showed that predicted growth rates were comparable with cell viability measurements and suggesting an increase in reactive oxygen species response enzymes due to metformin treatment. In addition, a method to assess flux differences in whole pathways was proposed. Our results show that these diverse approaches provide complementary information and allow us to suggest hypotheses about the response to drugs that target metabolism and their mechanisms of action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app