Add like
Add dislike
Add to saved papers

Impact of the pulse contrast ratio on molybdenum K α generation by ultrahigh intensity femtosecond laser solid interaction.

Scientific Reports 2018 March 8
We present an extended experimental study of the absolute yield of Kα x-ray source (17.48 keV) produced by interaction of an ultrahigh intensity femtosecond laser with solid Mo target for temporal contrast ratios in the range of 1.7 × 107 -3.3 × 109 and on three decades of intensity 1016 -1019   W/cm². We demonstrate that for intensity I ≥ 2 × 1018   W/cm² Kα x-ray emission is independent of the value of contrast ratio. In addition, no saturation of the Kα photon number is measured and a value of ~2 × 1010 photons/sr/s is obtained at 10 Hz and I ~1019   W/cm². Furthermore, Kα energy conversion efficiency reaches the same high plateau equal to ~2 × 10-4 at I = 1019   W/cm² for all the studied contrast ratios. This original result suggests that relativistic J × B heating becomes dominant in these operating conditions which is supposed to be insensitive to the electron density gradient scale length L/λ. Finally, an additional experimental study performed by changing the angle of incidence of the laser beam onto the solid target highlights a clear signature of the interplay between collisionless absorption mechanisms depending on the contrast ratio and intensity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app