Add like
Add dislike
Add to saved papers

Gene expression and activity of methionine converting enzymes in broiler chickens fed methionine isomers or precursors.

Poultry Science 2018 June 2
Common dietary supplemental methionine (Met) sources include DL-methionine (DL-Met) and the Met precursor DL-2-hydroxy-4-(methylthio) butanoic acid (DL-HMTBA). For bio-utilization, D-Met and DL-HMTBA are converted into L-Met through oxidation and transamination. The objective of this study was to determine the effect of different dietary supplemental Met sources on gene expression and enzyme activity of Met oxidases in male broiler chickens. Liver, muscle, duodenum, jejunum, and ileum were collected at days 10 (d 10), 21 (d 21), and 26 (d 26) post-hatch from male broiler chickens that were fed a basal diet deficient in sulfur amino acids (SAA) (control), or the control diet supplemented with DL-Met, L-Met, or DL-HMTBA to meet SAA requirements. The mRNA abundance of D-Met oxidase, L-HMTBA oxidase, and D-HMTBA oxidase was measured by real-time PCR, and oxidase activities were measured using colorimetric assays (n = 5). Liver expressed more D- and L-HMTBA oxidase mRNA, while breast muscle and liver expressed more D-Met oxidase mRNA than other tissues. In the liver, DL-HMTBA and L-Met supplementation were associated with greater mRNA abundance of L-HMTBA oxidase compared to the control diet-fed group at d 10 but not d 21 or d 26. DL-HMTBA supplementation, however, was not associated with changes in the mRNA abundance of D-HMTBA oxidase. The Met-deficient diet at d 26 was associated with greater hepatic abundance of DAO mRNA, which is responsible for oxidation of amino acids. Oxidase activities were similar among the Met deficient and Met-supplemented groups. In conclusion, dietary Met supplementation influenced the transcriptional regulation and activity of Met oxidases in a tissue and age-specific manner. Met oxidases may thus act as a determining factor in the bioefficacy of different dietary supplemental Met sources.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app