Add like
Add dislike
Add to saved papers

Pseudomonas aeruginosa MutL promotes large chromosomal deletions through non-homologous end joining to prevent bacteriophage predation.

Pseudomonas aeruginosa is an opportunistic pathogen with a relatively large genome, and has been shown to routinely lose genomic fragments during environmental selection. However, the underlying molecular mechanisms that promote chromosomal deletion are still poorly understood. In a recent study, we showed that by deleting a large chromosomal fragment containing two closely situated genes, hmgA and galU, P. aeruginosa was able to form 'brown mutants', bacteriophage (phage) resistant mutants with a brown color phenotype. In this study, we show that the brown mutants occur at a frequency of 227 ± 87 × 10-8 and contain a deletion ranging from ∼200 to ∼620 kb. By screening P. aeruginosa transposon mutants, we identified mutL gene whose mutation constrained the emergence of phage-resistant brown mutants. Moreover, the P. aeruginosa MutL (PaMutL) nicking activity can result in DNA double strand break (DSB), which is then repaired by non-homologous end joining (NHEJ), leading to chromosomal deletions. Thus, we reported a noncanonical function of PaMutL that promotes chromosomal deletions through NHEJ to prevent phage predation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app