Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Ultralight, Recoverable, and High-Temperature-Resistant SiC Nanowire Aerogel.

ACS Nano 2018 April 25
Ultralight ceramic aerogels with the property combination of recoverable compressibility and excellent high-temperature stability are attractive for use in harsh environments. However, conventional ceramic aerogels are usually constructed by oxide ceramic nanoparticles, and their practical applications have always been limited by the brittle nature of ceramics and volume shrinkage at high temperature. Silicon carbide (SiC) nanowire offers the integrated properties of elasticity and flexibility of one-dimensional (1D) nanomaterials and superior high-temperature thermal and chemical stability of SiC ceramics, which makes it a promising building block for compressible ceramic nanowire aerogels (NWAs). Here, we report the fabrication and properties of a highly porous three-dimensional (3D) SiC NWA assembled by a large number of interweaving 3C-SiC nanowires of 20-50 nm diameter and tens to hundreds of micrometers in length. The SiC NWA possesses ultralow density (∼5 mg cm-3 ), excellent mechanical properties of large recoverable compression strain (>70%) and fatigue resistance, refractory property, oxidation and high-temperature resistance, and thermal insulating property (0.026 W m-1 K-1 at room temperature in N2 ). When used as absorbents, the SiC NWAs exhibit an adsorption selectivity of low-viscosity organic solvents with high absorption capacity (130-237 g g-1 ). The successful fabrication of such an attractive material may provide promising perspectives to the design and fabrication of other compressible and multifunctional ceramic NWAs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app