Add like
Add dislike
Add to saved papers

MicroRNA-29c inhibits proliferation and promotes apoptosis in non-small cell lung cancer cells by targeting VEGFA.

Non-small cell lung cancer (NSCLC) is a primary sub-type of lung cancer with a high incidence rate and poor prognosis. The primary therapeutic treatment for NSCLC is chemotherapy, which is considered to be ineffective and excessively toxic. Novel therapeutic methods, particularly molecular targeted therapy, have attracted considerable attention. MicroRNAs (miRs) are reported to be potential biomarkers and targeted agents with roles in various types of tumors. Herein, the present study presented the observation of aberrant low expression of miR‑29c and associated overexpression of vascular endothelial growth factor A (VEGFA) in NSCLC tumor tissues. The effects of miR‑29c upon NSCLC tumor progression, including cell proliferation and cellular apoptosis, were investigated. The possible regulatory mechanism of action of miR‑29c on its direct target VEGFA and the phosphatidylinositol 3‑kinase (PI3K)/RAC‑α serine/threonine‑protein kinase (Akt) signaling pathway was examined using multiple methods, including reverse transcription-quantitative polymerase chain reaction analysis, dual luciferase assay and western blot analysis. The results demonstrated that miR‑29c expression was downregulated in NSCLC tumor tissues compared with normal tissues. A marked negative correlation in the expression of miR‑29c and VEGFA was observed in clinical NSCLC tissues and cultured NSCLC cells. Overexpression of miR‑29c may inhibit cell proliferation and accelerate the cellular apoptosis rate of NSCLC tumor cells. Furthermore, the overexpression of miR‑29c was demonstrated to be able to downregulate the expression levels of VEGFA and PI3K/Akt signaling pathway‑associated proteins. The results of the present study suggested that miR‑29c might regulate NSCLC tumor progression by targeting VEGFA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app