Add like
Add dislike
Add to saved papers

Curcumin inhibits superoxide dismutase-induced epithelial-to-mesenchymal transition via the PI3K/Akt/NF-κB pathway in pancreatic cancer cells.

Curcumin is a natural polyphenol compound derived from turmeric. It possesses multiple pharmacological properties, including antioxidant, anti-inflammatory and anti-tumor progression properties. Our recent study demonstrated that superoxide dismutase (SOD)-dependent production of hydrogen peroxide (H2O2) promoted the invasive and migratory activity of pancreatic cancer cells. However, whether curcumin suppresses SOD-induced cancer progression and the related mechanisms remains unclear. Since epithelial‑to-mesenchymal transition (EMT) plays a key role in tumor metastasis, the aim of the present study was to examine whether curcumin intervenes with SOD-induced EMT in pancreatic cancer and the underlying mechanism. The human pancreatic cancer cells BxPC-3 and Panc-1 were exposed to SOD in the presence or absence of curcumin, catalase (CAT, a scavenger of H2O2), or LY 294002 [a phosphoinositide-3 kinase (PI3K) inhibitor]. Intracellular reactive oxygen species (ROS) and H2O2 were evaluated by 2,7-dichlorodihydrofluorecein diacetate and H2O2 assay, respectively. The activation of p-Akt and p-nuclear factor (NF)-κB were examined by western blotting. The migratory and invasive abilities of pancreatic cancer cells were tested by the wound healing and Transwell invasion assays. The expression of E-cadherin, N-cadherin and vimentin (EMT-related genes) were measured by reverse transcription-quantitative polymerase chain reaction and western blotting at the mRNA and protein levels, respectively. The findings of the present study demonstrated that curcumin decreased SOD-induced production of ROS and H2O2 in BxPC-3 and Panc-1 cells. Curcumin was able to suppress SOD-induced invasion and migration, and it also regulated the expression of the above‑mentioned EMT-related genes and cell morphology. SOD-induced cell invasion was also inhibited by catalase and LY 294002. Furthermore, the levels of p-Akt and p-NF-κB caused by SOD could be offset by treatment with curcumin and LY 294002. To summarize, these results demonstrated that curcumin was able to prevent SOD-driven H2O2-induced pancreatic cancer metastasis by blocking the PI3K/Akt/NF-κB signaling pathway. The use of curcumin to inhibit the H2O2/Akt/NF-κB axis may be a promising therapeutic approach to the treatment of patients with pancreatic cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app