Add like
Add dislike
Add to saved papers

Enzyme-Free Amplification Strategy for Biosensing Using Fe 3+ -Poly(glutamic acid) Coordination Chemistry.

In this work, we outline a signal amplification strategy using the coordination chemistry between Fe3+ and poly(glutamic acid) (PGA) for biosensing applications. The theoretical calculation based on density functional theory shows that PGA has a much higher binding affinity with Fe3+ than the other metal ions. Guided by this rationale, we prepare a PGA-mediated signal probe through conjugating PGA onto polystyrene (PS) nanoparticles to form a brushlike nanostructure for Fe3+ coordination. This PGA-PS brush (PPB) has a large loading capacity of Fe3+ with a number of 1.92 × 108 Fe atoms per nanoparticle that greatly amplifies the signals for assays in an enzyme-free way. Combined with ferrozine coloration-based readout, this PPB-mediated amplification is further applied for the enzyme-free immunoassay that shows an ultrahigh sensitivity for detection of microcystins-LR (12 pg/mL), a 5-fold enhancement compared with that of traditional enzyme-linked immunosorbent assay (ELISA) (60 pg/mL). In addition, the good stability, rapid response, and long shelf life make this enzyme-free amplification strategy a promising platform for point-of-care biosensing applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app